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Abstract

Environmental bacteria belonging to various families were isolated from polluted water collected from ten different sites in Tunisia. Sites
were chosen near industrial and urban areas known for their high degree of pollution. The aim of this study was to investigate cross-
resistance between heavy metals (HM), i.e., silver, mercury and copper (Ag, Hg, and Cu), and antibiotics. In an initial screening, 80 isolates
were selected on ampicillin, and 39 isolates, retained for further analysis, could grow on a Tris-buffered mineral medium with gluconate
as carbon source. Isolates were identified based on their 16S rRNA gene sequence. Results showed the prevalence of antibiotic resistance
genes, especially all isolates harbored the bla, gene. Some of them (15.38%) harbored bla . Moreover, several were even ESBLs and
MBLs-producers, which can threaten the human health. On the other hand, 92.30%, 56.41%, and 51.28% of the isolates harbored the heavy
metals resistance genes silE, cusA, and merA, respectively. These genes confer resistance to silver, copper, and mercury. A cross-resistance

between antibiotics and heavy metals was detected in 97.43% of our isolates.
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Introduction

Since the industrial revolution, new ecological
niches have emerged following the release of toxic
industrial wastes, which often consist of a mixture
of heavy metals, organic compounds, and hydrocar-
bons, into the environment. Environmental pollution
is a significant problem, affecting many environments
in a negative and almost irreversible way (Filali et al.
2000). In particular, heavy metal contamination of
surface waters directly impacts both the environment
and public health (Chihomvu etal. 2015). Environmen-
tal bacteria that are resistant to heavy metals, as well
as multiple antibiotics, are of great concern in many
areas of the world.

Bacteria-heavy metal interactions have been stud-
ied in many and extreme environments. Some met-
als are essential cofactors of specific proteins; others
cause oxidative stress because of their redox poten-
tial. Heavy metals are naturally occurring, but with
excessive anthropogenic activities, they are shown in
large quantities, then become toxic at high concentra-
tion. Soil, water, and air are the major environmental
compartments, which are affected by heavy metals pol-
lution leading to many adverse impacts (Tchounwou
etal. 2012).

In this study, we focused on copper, silver, and
mercury. These heavy metals are more and more used
in many applications and are also found in different
areas worldwide (Kerfoot et al. 2002; 2004).
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Copper is an essential element that is toxic at high
concentrations (Chihomvu et al. 2015). High cytoplas-
mic copper concentrations can lead to dysfunctional
proteins (Kershaw etal. 2005), or damage lipids, DNA,
and other molecules (Harrison etal. 2000). Micro-
organisms have developed several copper resistance
mechanisms to survive in contaminated environments.

Silver is used as an antimicrobial agent in various
medical products, such as catheters, and for burns
wound treatments (Silver and Phung 1996; Klasen
2000; Jung et al. 2008). Bacteria can develop resistance
to silver via efflux mechanisms encoded by the sil- or
pcolcop-genes (Gupta etal. 1999).

The mercury ion has been known to be effective
against a broad range of microorganisms. It has no
beneficial functions in living organisms, and this toxic
compound can accumulate in the food chain (Jan et al.
2009). The mercury resistance system is encoded by the
mer operon, which reduces Hg?* into elemental mer-
cury via the mercuric reductase enzyme (MerA) (Boyd
and Barkay 2012; Fatimawali et al. 2014).

Furthermore, many reports suggested that heavy
metal contamination could directly or indirectly impact
the maintenance and proliferation of antibiotic resist-
ance (Summers 2002). Several studies reported the co-
occurrence of heavy metal and antibiotic resistance.
It has been proven that heavy metals in environmen-
tal reservoirs, water, wastewater, and soil, may con-
tribute to the selection of antibiotic-resistant strains
through co-resistance and cross-resistance mechanisms
(Nguyen etal. 2019). It is important to underline that
co-resistance occurs when genes coding for the resist-
ance phenotypes are present on the same mobile genetic
elements (i.e., plasmids, transposons, and integrons)
(Mandal et al. 2016). Mercury, copper, and silver resist-
ance genes are located on mobile genetic elements, e.g.,
on class II transposons with various antibiotic resist-
ance genes. For instance, Salmonella plasmid pMG101
carries silver, mercury, and tellurite resistance genes
and genes conferring resistance against chloram-
phenicol, ampicillin, tetracycline, streptomycin, and
sulphonamide. Plasmid-encoded mercury resistance
operons are frequently associated with class II trans-
posons. In addition, P-type ATPases are indispensable
for the transport of ions, such as copper and silver from
cells, acting as a resistance mechanism to actively efflux
heavy metal cations. These PIB-type ATPase genes
have been found to occur on plasmids and transpo-
sons in both Gram-positive and Gram-negative bac-
teria and be prone to horizontal gene transfer (HGT)
(Aminov 2011).

In this report, we were interested in studying the
contamination of ten sites in Tunisia by silver, copper,
and mercury and detecting a cross-resistance between
them and antibiotics in water environmental isolates.

It was done to understand better whether heavy metal
contamination could contribute to the proliferation and
the spread of antibiotic resistance.

Experimental
Materials and Methods

Sampling sites. Samples were collected from ten
different geographic areas from the north to the south
of Tunisia (Table I). Sampling sites were chosen because
of their geographic situation near urban, industrial,
and agricultural areas. Sample locations were based on
a previous study that determined the degree of pollu-
tion (Ben Miloud et al. 2020).

Sample collection and HM resistant bacteria
screening. A plankton net was used to recover water
samples, which were transferred into sterile bottles and
transported at 4°C to the laboratory. After a first filtra-
tion step to remove insoluble solids, a nitrocellulose
filter (0.45 um) was used to collect microorganisms.
Filters were directly placed on Lysogeny Broth (LB)
agar plates with ampicillin (AMP) 64 pg/ml and incu-
bated for 24-48 hrs. at 37°C. Ampicillin was used to
counter select sensitive isolates. In the next step, growth
on Tris-buffered mineral agar supplemented with 0.2%
(w/v) sodium gluconate (MM284) (Mergeay et al. 985)
was scored. Finally, 39 isolates were stored on 15%
glycerol at -80°C.

Total DNA extraction. According to the manu-
facturer’s protocol, the total DNA of each isolate was
extracted from bacterial cultures using the QIAamp
DNA Maxi kit. DNA concentration (ng/ul) was meas-
ured with the Nano Drop Microvolume Quantitation
of Nucleic Acids. (Thermo Scientific, NanoDrop 1000).

Amplification of the 16S rRNA gene. The 16S rRNA
gene was amplified using 50-100 ng of total DNA, 25 pl
of DreamTaq Green PCR Master Mix (2X), 0.1-1 uM
of the universal primers 8F (5-AGAGTTTGATCCTG-
GCTCAG-3’) and 1492R (5-TACGGTTACCTTGT-
TACGACTT-3") (Galkiewicz and Kellogg 2008), and
adjusted to 50 ul with nuclease-free water. Amplification
was performed in an Eppendorf Master cycler thermo-
cycler (Hamburg, Germany) using the following condi-
tions: initial denaturation at 95°C for 10 min, 30 cycles
of 95°C for 30s, 56°C for 30s, 72°C for 2 min, and a final
extension at 72°C for 10 min. The 16S rRNA gene ampli-
cons were purified (Promega SV Gel and PCR clean-up
system kit) and sequenced (Eurofins Genomics, Ger-
many). Isolates were identified using16S rRNA sequence
according to Greengenes Database.

Phylogenetic analysis. The 16S rRNA gene
sequences were aligned to silva, trimmed to the same
region removed those shorter than 900 bp (6 sequences),
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Table I
Sampling sites characteristics, locations, and their corresponding geographic coordinates.

. . G hic . .
Sites/numeration eogr.ap ! Location Characteristics
coordinates
Menzel Jemil, 37°14'19"N, Industrial area Waste and contamination from the textile industry
Bizerte: Site I 9°54'59"E and wiring throwing inside the Bizerte lagoon

Menzel Bourguiba, |37°09'N, 9°47'E

Bizerte: Site IT In the Iron factory

Unit manufacturing printed circuits.| Contamination by HM from the iron factory

in the Bizerte lagoon. Urban and agricultural pollution

Tinjah wedi, 37°10'N, 9°45'E

Bizerte: Site I1I

Near the lagoon of Bizerte

Agricultural pollution and compost contamination.

Beja: Site IV 36°43'30"N, Southwest of the city of Tunis Urban and industrial area, the most known
9°10'55"E Near the CWTP* are wastewater and yeast factory

Essijoumi Lagoon: |36°45'52"N, Contribution in the Gulf of Tunis | Lagoon receiving contamination from wastewater

Site V 10°08'49"E contamination and wastes from the capital Tunis.

Rades Milian River: |36°46'N, Industrial zone of Rades High load alluvial estimated at 25 grams per liter.

Site VI 10°17'E Receiving wastewater from two towns Rades and Ezzahra.

Majerda River: 37°7'0"N, A peninsula in far north-eastern Used for irrigation of the region’s agriculture

Site VII 10°13'0"E Tunisia

Lebna River: 36°45'N, Inlet manifold sewage treatment Agricultural coastal Plans can be found in the area

Site VIII 10°54'E plant of Cap Bon

Om Larayes, Gafsa: |34°28'59"N, The industrial platforms One of the known mining towns in Gafsa

Site IX 8°16'01"E of phosphgyps activity

Gulf of Gabes: 34°05'37"N, The junction between the Eastern | Known by industry for the transformation

Site X 10°26'13"E and Central Basin of merchantable phosphate into Phosphoric

Acid (H,PO,) and Chemical Fertilizers

* — CWTP: Collector between wastewater treatment plant.

reported the phylogeny based on both filtered and com-
plete set of sequences. The phylogenetic tree was built
by the MEGA clustal algorithm, and distances calcu-
lated using “Maximum Likelihood” in MEGA X. The
evolutionary history was inferred by using Maximum
Likelihood and Tamura-Nei model (Tamura and Nei
1993; Kumar etal. 2016). Evolutionary analyses were
conducted in MEGAX.

Antibiotic susceptibility testing. The disk diffusion
agar technique determined susceptibility to antimicro-
bial agents. The following antibiotic disks (supplied by
BioMerieux) were used: amoxicillin (10 pg), amoxicil-
lin/clavulanic acid (20 pg/10 ug), piperacillin (100 pg),
piperacillin/tazobactam (100 ug/10 pg), cephalothin
(30 ug), cefotaxime (30pg), ceftazidime (30pg),
aztreonam (30 pg), imipenem (10 pg), nalidixic acid
(30 pg), ciprofloxacin (5 pg), chloramphenicol (30 pg),
gentamicin (10 pg), kanamycin (30 pg), streptomycin
(10 pg), sulfamethoxazole/trimethoprim (25 pg), and
tetracycline (30 ug) (Vicente etal. 1990).

Determination of heavy metal minimal inhibi-
tory concentration. To determine the MIC of heavy
metals, a stationary phase culture (OD, of ca. 1.0 rep-
resenting 10° CFU/ml) of each isolate grown in Tris-
buffered mineral medium (MM?284) supplemented
with gluconate was diluted 50 times in 2 x concentrated
MM284 medium. 100 ul of each culture was added to

a 96-well plate containing 100 pl of a heavy metal ion
solution (Cu**, Hg*", and Ag") at increasing concentra-
tion. Plates were incubated at 30°C for 48 h in the dark
on a rotary shaker. At different time points, bacterial
growth was measured by determining the optical den-
sity at 595 nm. The minimal inhibitory concentration
(MIC) was determined for Cu*, Hg?*, and Ag*. Cupria-
vidus metallidurans CH34 and Escherichia coli K38 were
used as references (Monsieurs etal. 2011). Isolates
showing higher MICs than both reference strains were
considered as resistant.

PCR amplification of antibiotic resistance genes.
B-lactamases encoding-genes were screened as pre-
viously described (Dallenne etal. 2010) using multi-
plex PCR 1 for the detection of the bla, , bla, , and
bla, , .. genes; multiplex PCR2 for the detection of
the bla ., subgroups (bla_. . ,bla_. . bla_. . .
bla_,. .o bla .y \.,.)> and a separate simplex PCR for
the detection of the blaOX s g€ne. Primers, amplifi-
cation conditions and expected fragment sizes are
shown in Table II. Fluoroquinolone resistance genes
were screened using multiplex PCR 3 (qnrA, gnrB,
qnrC,gnrD, gqnrS, and 0qxAB), as previously described
(CLSI 2013). Primers, amplification conditions, and
expected fragment sizes are shown in Tables II and III.

PCR amplification and sequencing of the silE,
merA, and cusA genes. The silE gene, coding for
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Table IT
Primers, expected fragment size and conditions of PCR experiments used for B-lactams resistance encoding genes.

Mul- .  ar Size Con(.:en— Volume Amplification
tiplex Target Primers sequences (5'-3’) (pb) tration () conditions
(pmol/pl)
TEM MultiTSO-T_F CATTTCCGTGTCGCCCTTATTC 200 0.4 0.4
MultiTSO-T_R CGTTCATCCATAGTTGCCTGAC 0.4 0.4
1 SHV MultiTSO-S_F AGCCGCTTGAGCAAATTAAAC 13 0.4 0.4
MultiTSO-S_R ATCCCGCAGATAAATCACCAC 0.4 0.4
MultiTSO-O_F GGCACCAGATTCAACTTTCAAG 0.4 0.4
OXA-1-like 564 . .
MultiTSO-O_R GACCCCAAGTTTCCTGTAAGTG 0.4 0.4 94°C 10 min
MultiCTXMGp1_F TTAGGAARTGTGCCGCTGTA 0.4 0.4 94°C 40 sec
CTX-M group 1 688 60°C 40 sec 30 cycles
MultiCTXMGp1_R CGATATCGTTGGTGGTCCCAT 0.2 0.2 72°C 1 min
MultiCTXMGp2_F CGTTAACGGCACGATGAC 0.2 0.2 72°C 7 min
CTX-M group 2 404
) MultiCTXMGp1_R CGATATCGTTGGTGGTTCCAT 0.2 0.2
MultiCTXMGp9_F TCAAGCCTGCCGATCTGGT 0.4 0.4
CTX-M group 9 561
MultiCTXMGp9_R TGATTCTCGCCGCTGAAG 0.4 0.4
CTX-Mg8/25_F AACTCCCAGACGCTCTAC 0.4 0.4
CTX-M group 8 326
CTX-Mg8/25_R TCGAGCCGGAASGTGTAAT 0.4 0.4
Sim- . Vo Size Con.cen— Volume Amplification
lex Target Primers sequences (5'- 3") (pb) tration () conditions
P (pmol/ul)
MultiOXA-48_F GCTTGATCGCCCTCGATT 0.4 0.4 94°C 10min
94°C 40 sec
1 |OXA-48 281 57°C 40 sec 30 cycles
MultiOXA-48 R GATTTGCTCCGTGGCCGAAA 0.4 0.4 72°C 1 min
72°C 7 min
Table III
Primers, expected fragment size, and conditions of PCR experiments used
for quinolones resistance encoding genes.
Multiplex | Target Sequence of primer (5'-3) Size (bp) | Amplification conditions
qnrA_FCAGCAAGAGGATTTCTCACG
qnrA 630
qnrA_RAATCCGGCAGCACTATTACTC
B qnrB_FGGCTGTCAGTTCTATGATCG 488
nr.
1 qnrB_RGAGCAACGATGCCTGGTAG 95°C 15 min
qnrC_FGCAGAATTCAGGGGTGTGAT 94°C 30 sec
3 qnrC 118 63°C 40 sec 30 cycles
qnrC_RAACTGCTCCAAAAGCTGCTC 72°C 90 sec
oD qnrD_FCGAGATCAATTTACGGGGAATA 581 72°C 10 min
1 qnrD_RAACAAGCTGAAGCGCCTG
S qnrS_FGCAAGTTCATTGAACAGGGT 08
n.
1 qnrS_RTCTAAACCGTCGAGTTCGGCG

a periplasmic heavy metal binding protein involved
in silver resistance, the cusA gene, part of the RND-
driven system effluxing copper, and the merA gene,
coding for a mercury reductase detoxifying mercury
stress, were amplified by PCR. The following reaction
mixture (50 ul) was used: 25 pl of DreamTaq Green PCR
Master Mix (2X), 0.1-1uM of reverse and forward
primer (50-100ng) genomic DNA as previously
described (Silver and Phung 1996; Besaury et al. 2013).

PCR products were purified by PCR Clean-up and
sequenced (Eurofins Genomics, Germany).

Protein prediction and analyses. The silE, cusA,
and merA genes sequences were translated to their
corresponding protein using Expasy website, then
aligned using BioEdit with SilE from pMG101 (SilE
AADI1171743), Escherichia coli (CusA P30854), and
Enterobacter cloacae (MerA EU081910), respectively.
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Results

Sample collection and identification of bacterial
isolates. Ten filters placed on LB plates, each belonging
to a sample collected from the ten sites, showed multiple
colonies. The choice of colonies was based on shape and
color. Therefore, 80 colonies were chosen from the ten
plates to determine the prevalence of heavy metal- and
antibiotic-resistant bacteria. In the next step, only the
39 isolates that grew on Tris-buffered mineral agar sup-
plemented with 0.2% (w/v) sodium gluconate (MM284)
(Mergeay et al. 1985) were retained. MM284 contained
HM trace was used to test heavy metal resistance. Sub-
sequently, the selected isolates were identified using the
16S rRNA gene amplification followed by sequencing,
and the corresponding phylogenetic tree was dressed
and presented in Fig. 1. Despite the sampling locations,
the phylogenetic tree showed a similarity between spe-
cies. Therefore, six clusters were shown.

Antibiotic resistance profiles and genes. Disk dif-
fusion tests showed that the isolates’ antibiotic resistance
profiles were diverse (tested according to EUCAST 2018

guidelines). Resistance was detected against different
families, including B-lactams, fluoroquinolones, amino-
glycosides, tetracycline, and macrolides. We noted that
isolate Aeromonas salmonicida 32 was only resistant to
ampicillin by the production of TEM-1B-lactamase. The
other isolates were resistant to less than two antibiotics
by the production of different resistance enzymes, like
CTX-M-1, OXA-48, SHV-1, CTX-M-9, or OXA-1. Only
two isolates, E. coli 3 and Klebsiella pneumoniae 39 were
resistant to quinolones by the expression of gnrB.
Heavy metal resistance profiles. Growth of all
strains was inhibited at silver nitrate, copper, and mer-
cury at concentrations starting from 0.032 to 0.064 mM,
1.5 to 6 mM, and from 0.02 to 0.08 mM, respectively.
A high MIC value for silver was observed for 92.30%
of the isolates collected from the ten sites. Only three
isolates were sensitive to silver, two from Beja and
Essijoumi Lagoon, and one from Melian Rades Wedi.
The growth of strains was inhibited at the cop-
per concentrations starting from 3 to 6 mM. Copper
resistance in relation with sites was as follows: 100%
of sensible isolates were detected in Majerda River

Klebsiella pneumoniae 7

Klebsiella pneumoniae 39

Klebsiella pneumoniae 13
Klebsiella pneumoniae 30

Escherichia coli 3

Enterobacter cloacae 27

|— Pseudomonas fluorescens 31
Pseudomonas fluorescens 35

Pseudomonas putida 36

Pseudomonas putida 26

Pseudomonas putida 34
Pseudomonas putida 16

Pseudomonas putida 15

|— Pseudomonas fluorescens 14
Pseudomonas fluorescens 38
Pseudomonas putida 8

Pseudomonas alcaligenes 19

Pseudomonas mendocina 5
Pseudomonas mendocina 10
Pseudomonas mendocina 11

‘

O 03

[Serralia marcescens 25
Serratia fonticola 28

—l__ Aeromonas salmonicida 17
Aeromonas salmonicida 32

Alcaligenes feacalis 12

Pseudomonas anguilliseptica 1

|—Staphylococcus aureus 4

Enterobacter cloacae 20

Serratia marcescens 37

Alicagenes feacalis 29

Alicagenes feacalis 9

Aeromonas salmonicida 33

Alcaligenes eutrophus 2
Alcaligenes eutrophus 24
Alcaligenes eutrophus 6

Alcaligenes eutrophus 18

Fig. 1. Phylogenetic tree based on the partial
16S rRNA gene sequences of the 39 isolates.
Ten colors used to distinguish ten differ-
ent sampling sites classified from north to
south of Tunisia: Dark blue: Menzel Jemil;
Orange: Iron factory; Red: Tinjahwedi
Bizerte; Cyan: Collector between wastewa-
ter treatment plant (CWTP) of Beja; Green:
Marsh Sejoumi; Yellow: Milian Rades Wedi;
Light purple: Majerda River; Pink: Lebna-
wedi Cap Bon; Dark purple: Om Larayes
Gafsa; Grey: Golf of Gabes.
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showing MIC values from 0.75 to 1.5mM; <80% of
sensible isolates were detected in Gafsa (about four
from a total of five isolates), which demonstrated the
lowest MIC values from 0.625 to 1.5 mM; < 50% of sen-
sible isolates were detected in Essijoumi Lagoon with
MIC values similar to that of the isolates from Gafsa;
<25% of isolates were detected in each site with MIC
values ranged from 0.625 to 1.5 mM. As a result, 75%
of isolates resistant to copper were detected in the fol-
lowing Sites: I, IL, IIL, IV, V1, IX, and X followed by 50%
of the resistant isolates detected in Site V, and 20% of
the isolates were detected in Gafsa (Site VIII). However,
none of the isolates resistant to copper were detected in
Majerda River (Site VII). Resistant and sensible isolates
were detected with different percentages from one site
to another as follows: 100% of isolates were detected
in Lebna wedi Cab Bon with a low MIC: equal to
0.005 mM; < 75% of isolates detected in Gulf of Gabes
were sensible to mercury with the MIC values ranged
from 0.0025 to 0.008 mM; <50% of sensible isolates
were isolates from Bizerte (Site I, II, and III) with the
MIC values ranged from 0.0025 to 0.005 mM; <40% of
isolates were sensible to mercury with the MIC values
equal to 0.005 mM belonged to Site VIII; <33% sensible
isolates collected from Collector between wastewater
treatment plant (CWTP) of Beja, Melian Rades Wedi,
and Majerda River. All isolates collected from Essoujimi
River were resistant to mercury with the MIC values
equal to 0.08 mM.

A high percentage of resistance to silver was shown
for 92.30% of the total isolates. Furthermore, 22 isolates
(56.41%) showed high resistance to copper, and about
half of the isolates (51.28%) showed high resistance
to mercury.

Identification of the heavy metal resistance encod-
ing genes. PCR amplification using the specific primers
provided three different amplicons with a size of 400 bp
for the silE gene, 410 bp for the cusA gene, and 280 bp
for the merA gene (Fig.2). Sequencing confirmed
amplification of the correct fragment and showed that
silE was the most common. The silver binding protein
gene silE was detected in all isolates collected from the
ten sites except for one isolate from each Site (IV, V, and
VI), which was deprived of it. Reported MICs of silver
for resistant isolates did not inhibit colony growth at
0.032 mM to 0.064 mM (Table IV). The copper resist-
ance gene cusA was detected in 100% isolates from
Site III, 80% of isolates from Site II, 75% isolates from
Site (I, VIII and X), 66% of isolates from Site IV, 50%
of isolates from the Site V, 33% of isolates isolated from
Site VI, and absent in isolates collected from Sites VII
and XI. Reported MICs of copper for resistant isolates
did not inhibit colony growth at 3 mM to 6 mM.

The mercuric reductase gene merA were detected
in 100%, 75%, 66%, 50%, 40%, 33%, and 25% isolates

Ben Miloud S. etal. 2
M M M
= =
— e
! ~ V -
—
Qe
- el
— pumant RA100D K
o — -
e — 285 bp
[on—] — —
—
et 400 b
P
-
-
.-
e
a b c

Fig. 2. Detection by PCR of heavy metal resistance genes.

a — Amplicon of silE of Enterobacter cloacae 27 (400 bp);
b — Amplicon of cusA of Klebsiella pneumoniae 13 (410 bp);
¢ - Amplicon of merA of Pseudomonas putida 26 (285 bp);
M - Size Marker 1 kb Plus.

collected from Site V, IX, (IV, VI), (I, III), II, VII, X,
respectively. No gene was detected in the isolates col-
lected from Site VIII. Reported MIC of mercury for
resistant isolates did not inhibit colony growth at 0.02
to 0.08 mM. Ten isolates harbored silE, cusA, and
merA. For only one isolate, identified as Pseudomonas
putida 23, no amplification was observed. Therefore, we
observed a significant correlation between the detec-
tion of resistance genes and MIC determinations.

Structural and functional analyses of protein
binding site. The complete sequence of the extracel-
lular heavy metal-binding protein SilE of pMG101
from Salmonella (AAD1171743) is composed of 143
amino acids (Asiani etal. 2016). Sequence alignment
of the partial SilE sequence obtained from the 39 iso-
lates (this study) and the SilE of pMG101 showed that
84.6% of the SilE sequences were 100% identical to
each other and the SilE of pMG101. The rest (15.4%)
showed some sequence variation from the SilE of
pMG101 (Fig. 3). Nevertheless, all isolates showed the
conserved histidine and methionine residues in their
sequences and the Ag*binding motif characteristic to
SilE (Asiani etal. 2016).

The complete sequence of CusA efflux pump of
the E. coli (CusA P30854) is composed of 1,047 amino
acids. Sequence alignment of the partial CusA protein
from ten isolates with CusA from E. coli (CusA P30854)
showed various mutations. A minor difference detected
between partial CusA sequence from E. coli 3 and the
consensus E149G and V2671.
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Antibiotic and heavy metal resistant bacteria in Tunisia
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E. coli: P38054
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GHDLADLRSLODWFLKYELKTIPDVAEVASVGGVVKEYQVVIDPQRLAQYGISLAEVKSALDASNQEAGGSSTELAEAEYMVRASGYLQTLDDFNHIVLKASENGYPVYLRDVAKVQIGPEMRRGIAELNG

E.coli 3 B Voo,
E.cloacae 27 E.SEt, Foovns Neoooo 0..IQUN.VK.S......P...0..ES......... VMo SN TG S
K.pneumoniae7 E...SE.......... Foorinn Nevooooninnn, Q.. IQUWN.VK.S......P...Q..ES......... VM S N TG RoTonn,
K.pneumoniae 13 E...SE.......... Foovins N 0..IQN.VK.S......P...Q..ES......... VMo S NLLTG RoTo,
K.pneumoniae 30 E...SE.......... Foornnn Nevooonnn, 0..IQWN.VK.S......P...Q..ES......... VMo SN TG RoTooionn,
K.pneumoniae 39 E...SE.......... Foornnn Nevoooonnnnn, Q..IQUWN.VK.S......P...Q..ES......... VMo S N TG RoToinn,
A.feacalis 9 P S Fovvuns N 0..IQN.VK.S......P...Q..ES......... VMo S NLLTG RoTo,
B.coagulans21 E...SE.......... Foovins N 0..IQN.VK.S......P...Q..ES......... VMo S NLLTG RoTo,
P. alcaligenes 19 E.SCPADGHCRTGS. ... .. GL.N.....TL..M..Q...LL...K.VA..VTQQ. .EA. .KSA...T..AIL....R......uus ES.A..RNVP.R..AS....L.GO..TI.L.vvvvivnnnn,
P. putida 36 E.SCPADGHCRTGS...... GL.N..... TL..M..Q...LL...K.VA..VTQQ. .EA. .KSA...T. .AIL....R.......... ES.A..RNVP.R..AS....L.GO..TI.L.vvvvivnnn,

Fig. 4. Sequence alignment of the partial Cation efflux system protein CusA from 10 isolates with E. coli P30854.
Different residues from the consensus are showed by one letter. Conserved residues are represented by points.

E. cloacae (HZ7491

K. pneumoniae 7 AVaM;: aT s iaspnomeman s
P. mendocina 10 AVAM . RT 5.5 oNiw scmasn T

K. pneumoniae 13 AV sl mems e on sensmoms
P. alcaligenes 19 AVeM: sl ssmsmes ne mem o s
A. eutrophus 22 Bl iV ol .51 5 i & 15 o8 5 60 B 0 6
P. putida 34 AVM..T...............
P. putida 36 CMOT
P. fluorescens 38 seMa sl mom om s EEE e E 3

RLRTASAAVWISSPASGATACTPISRPLPSSTTSLMKPRVSKLASARGTLSSVSVRLSVL

Fig. 5. Sequence alignment of the partial mercuric reductase protein MerA from 8 isolates with E. cloacae (MerA EU081910).
Different residues from the consensus are showed by one letter. Conserved residues are represented by points.

A similar partial CusA sequences from E. cloacae
27, Alcaligenes feacalis 9, Bacillus coagulans 21, and
K. pneumoniae (7, 13, 30 and 39) were different by 26%
residues with the consensus.

Similar partial CusA sequence was showed for
Pseudomonas alcaligenes 19 and P. putida 36. Never-
theless, both of them detected a low sequence homo-
logy with 42% of different residues comparing with the
consensus (Fig. 4).

Five hundred sixty-one amino acids compose the
complete sequence of the mercuric reductase MerA
protein of E. cloacae (MerA EU081910). Similar par-
tial MerA sequences of P. alcaligenes 19 and P. putida
34 were different by seven residues comparing with the
consensus (E. cloacae (MerA EU081910). Moreover,
K. pneumoniae (7 and 13) showed the seven different
residues mentioned previously for P. alcaligenes 19 and
P. putida 34, and showed another different extra residue
R55V N37K, respectively (Fig. 5).

Same different residues like in P. alcaligenes 19 and
P, putida 34 except for one residue S1A was detected in
Alcaligenes eutrophus 22.

Discussion

In order to investigate the spread and emergence of
environmental bacteria resistant to heavy metals in con-
taminated waters, we studied the heavy metal-resistant
phenotype and selected marker genes for resistance to
silver, mercury, and copper. In addition, we scored anti-
biotic resistance to evaluate the impact of heavy metal

contamination as a selective agent in the spreading of
antibiotic resistance. The heavy metals in the collected
contaminated waters from ten sites over Tunisia mainly
originated from anthropogenic activities. Sites I, II, and
II1, located near and surround the Lagoon of Bizerte,
were subjected to urban and agricultural pollutions.
As described by Dellali etal. (2001), agricultural ori-
gin wastes reach the lagoon due to leaching of inland
cultivated and devoted to cereal activities (Banni et al.
2009). With the thirteen isolates collected from Sites I,
I1, and III, the highest resistance was recorded for silver;
100% of isolates showed the high MIC values for Ag*
ranging from 0.032 to 0.064 mM, and harbored the silE
gene in the same time.

Prevalence of multidrug-resistant bacteria in the
North of Tunisia. Ten resistant isolates from Sites I,
I1, and III harbored the CusA efflux pump. The cusA
gene was found in 84.6% of the isolates in I, II, and III
Sites. All of these isolates showed high MICs of copper
ranging from 3 to 6 mM, except for only one isolate,
which was able to grow in a concentration of 1.5 mM,
and harbored the gene simultaneously. The contents of
copper of the superficial sediments of the Lagoon of
Bizerte suggested by Dellali etal. (2001), Ouakad etal.
(2007), and Ben Garali etal. (2010) showed a remark-
able increase of the concentrations 45 parts-per-million
(ppm), 58 ppm, and 67 ppM respectively. These values
are beyond the admissible limit of the National Net-
work of Observation (RNO 2007) with 30 ppm, and
therefore, they are considered contaminated. Those
results can explain the high level of resistance against
copper, shown by isolates from this work.
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On the other hand, we found the merA gene in
only 46.15% of the isolates that could grow in con-
centrations higher than 0.04 mM. This low resistance
against mercury can be explained by the low concen-
tration of mercury in the lagoon and surrounding
areas, such as Bizerte, Menzel Bourguiba (0.41 ppm)
(Mzoughi etal. 2002).

Data recorded in Essijoumi Lagoon showed that
50% of isolates collected in this site harbored the cusA
gene and were able to grow until a concentration of
Cu ranged from 3 to 6 mM. The copper concentration
recorded in this site corresponds to a high concentra-
tion (359 ppm) (Marzougui and Ben Mammou 2006);
it is much higher than the critical values given by the
European norm (30 ppm) (Rademacher 2001). Moreo-
ver, 75% of the isolates for which the MIC values of Ag*
were above 0.032 mM, harbored the silE gene. Zhang
etal. (2019) reported that copper ions (Cu**) could
stimulate the conjugative transfer of silver via resistance
nodulation-cell division (RND-type) Ag*/Cu* efflux
transporter that exports Ag*/Cu* from the periplasm
via an antiport (Randall etal. 2015).

No data in the literature evokes the contamination
of this site by mercury. Nevertheless, 100% of isolates
in this site harbored the merA gene with the high MIC
value between 0.04 and 0.08 mM. Those high values are
considered as the first values reported in the literature.

Site VI and VII are located on the west coast of
Tunis’s gulf and exposed to heavy metals, mainly
transported to the marine environment (Ben Amor
etal. 2019). The geoaccumulation index value for cop-
per (10 ppm) recorded by Ben Amor etal. (2019) has
indicated that all samples were uncontaminated. Those
results explained in the present work, the lowest pro-
portion (20%) of isolates that harbored the cusA gene,
while 83% and 60% of them showed resistance to silver
and mercury, respectively.

Trace heavy metal, like mercury, is among the most
severe pollutants in nature due to its toxicity. Luckily,
it was reported by Ennouri etal. (2008) at a very low
concentration (0.33 ppm) in the Lebna River (Site VIII).
Regarding Hg, the concentrations are relatively low. It
may be why isolates did not develop any resistance,
especially that we did not detect the merA gene among
our isolates. The metal at a concentration of only
0.005 mM could have inhibited their growth.

Prevalence of multidrug-resistant bacteria in
South of Tunisia. The lowest (20%) and the highest
(100%) percentages of the resistant isolates against cop-
per and silver, respectively, were collected from Gafsa
(Site IX). Copper inhibited the growth of 20% of iso-
lates at a concentration of 3 mM. Site IX was exposed
to a high degree of phosphoric and heavy metals con-
tamination due to the anthropogenic activities i.e., min-
ing, manufacturing, and the use of synthetic products
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(Mekki and Sayedi 2017). It can explain why growth
was inhibited for all isolates at a high silver nitrate con-
centration starting from 0.032 up to 0.064 mM, and that
60% of isolates harbored merA to resist the mercury
presence. They were able to grow in the presence of Hg*
at a concentration of 0.08 mM.

The leading cause of contamination of waters in
Gabes (Site X) is the acidic industrial effluent that origi-
nated from the phosphate treatment factory. Effluents
contain phosphogypsum particles and cause ecological
risk to marine organisms and human health (Naifar etal.
2018). 75% of isolates from Gabes harbored the cusA
gene with the MIC value for copper of 3 mM. When we
compare our results with Naifar etal. (2018) results,
we could say that the copper concentration of 0.5 ppm
is lower than Tunisian standards (1.5 ppm). It can stim-
ulate the resistance against copper with high MICs.
The co-stimulation may explain those results by other
heavy metals present with high concentrations, i.e., iron
(16 ppm) and Zn (18 ppm). Both values exceeded the
Tunisian standards (1 ppm) and (10 ppm), respectively.

The present study provided new information about
silver contamination, notably the highest resistance in
the ten sites was recorded to silver. The silE gene was
harbored by 36 isolates (92.30%) of the total 39 isolates.
Moreover, the silver resistance prevalence was higher
than those observed by Edwards-Jones (2009), who
recorded only 3.5% isolates possessing the silver resist-
ance genes silE of 172 bacterial isolates from wounds.
The considerable difference between these studies may
be explained by the fact that the environment always
brings the most significant risk of being exposed to HM
contamination.

Molecular analysis of multi-drug resistance. The
latter encodes the extracellular heavy metal-binding
protein (periplasmic space) SilE. Observed amino acid
sequence variations did not concern conserved histi-
dine and methionine residues nor the Ag* binding motif
characteristic to SilE, described by Asiani et al. (2016). It
allowed the corresponding isolate to maintain its ability
to resist silver presence by producing an active SilE, and
conserved the protein functionality in absorbing heavy
metal ions. These results confirmed again that mutations
observed here had no impact on the MIC value of silver.

Long etal. (2010) suggest a crystal structure of the
CusA efflux pump methionine mediated Cul but also
Agl heavy metal transport. The cusA gene was harbored
by 43.4% of our isolates.

The heavy metal binding-sites are formed by three
methionines (M573, M623, and M672) and found above
this horizontal helix (Long etal. 2010). The partial
sequence aligned with consensus started from AA' to
AA* with conserved M**and M*". The latter is one of
the four channel pairs, which includes the four methio-
nine pairs (M410 and M501, M403 and M486, M391
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and M1009, and M271 and M755) as well as the heavy
metal binding-sites formed by the three methionines,
facilitating heavy metal transport. The mutations that
affected the other residues, which did not touch the
heavy metal binding-sites or the channel, conserved
their functionality in absorbing Agl and Cul ions.

The mercury reductase MerA is known as an
enzyme, reducing the ionic mercury Hg (II) to ele-
mental mercury. In bacteria, the mercury resistance is
specified by operon (mer) that can transport Hg (II)
and organo-mercury to the cytosol for degradation and
reduction to Hg (0). MerA catalase, a flavin oxidore-
ductase, reduces Hg (II) to NAD(P)H dependent reac-
tion. MerA or mercury reductase can play an important
role in the biogeochemical cycling of mercury in con-
taminated environments by partitioning mercury to the
atmosphere (Ni Chadhain etal. 2006).

The MerA amino acid sequences multiple align-
ments in the present study revealed a minor difference
in sequence patterns between our MerA protein iso-
lates and the consensus (Fig. 5). Thus, the partial MerA
sequence did not contain both motifs. Despite the few
mutations, mercuric reductase from our resistant iso-
lates retained the ability to reduce mercury. We suppose
that FAD/NADP and mercury binding sites were well
conserved in our eight resistant isolates. Among 51.2%
of mercury-resistant isolates,, which detected the merA
gene, only 20% of them expressed the MerA protein;
however, the remaining isolates expressed ABC Trans-
porter, TeTR family, ATP-ase super-family, and ATP
binding family.

Molecular aspects of cross-resistance. To better
understand the bacterial cross-resistance and its eco-
logical risk, it was essential to elucidate the bacterial
resistance against heavy metals and antibiotics.

The overuse of antibiotics in clinics and hospitals
raises the emergence of resistant bacteria. Environmen-
tal bacteria, especially, showed resistance to antibiot-
ics, which were detected in different environmental
compartments such as soils, surface water, sediments
ground water, and waste-water (Kiimmerer 2004).

In the present study, the environmental strains iso-
lated from the ten sites showed high resistance to a large
number of antibiotics, and some were even ESBLs and
MBLs-producers, which is a global health concern.
This ubiquitous detection of antibiotic resistance and
resistant genes in isolates indicates the emergence of
antibiotic-resistant strains in the golf of Tunis and Gulf
of Gabes, which threatens the health of animals and
people throughout Tunisia.

Substantial reports suggest that heavy metal con-
tamination represents an indirect selection agent that
contributes to the maintenance and spread of antibiotic
resistance factors (Baker-Austin etal. 2006). The silE
gene can be harbored on plasmids (Ben Miloud etal.
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2020) carrying antibiotic resistance genes, and silver
can thereby have an indirect selective pressure. Even
more directly, silver can select for porin deficiency and
consequently mediate a cross-resistance to p-lactams
(Sttterlin etal. 2014). In addition, contamination by
heavy metals such as cadmium, zinc, copper, and mer-
cury affected soil or water environment, besides they
are toxic to bacteria. They also initiate the co-selection
of antibiotic resistance using different mechanisms, i.e.,
agricultural soils amended with copper co-select resist-
ance to ampicillin, chloramphenicol, and tetracycline
(Oves and Hussain 2016).

Conclusion

It is the first work describing contaminations by
copper, silver, and mercury in ten sites in Tunisia. Such
data were almost absent in the literature. Moreover, a
high degree of heavy metal and antibiotic resistance
were found in our isolates. They develop some new
mechanisms to eliminate or reduce heavy metals or
antibiotics’ impact.

The resistant environmental bacteria in Tunisia are
more prevalent than we expected for both antibiotic and
heavy metal resistance. The cross-resistance between
them made the bacteria better fitted to the environ-
ment. It also enhances the danger and the risk of public
health. Even though the detailed mechanisms of cross-
resistance are unclear, it will be recommended to study
the impact of heavy metals on antibiotic resistance in
environmental microorganisms. With the extent of pol-
lution, it is valid to study the co-existence of antibiotics
and heavy metal resistance and their particular influ-
ence on bacteria.
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